twitter RSS Feed linkedin acp contact

Controlling black pod and canker

Dr Terry Mabbett describes the theory and practice of successfully treating black pod and stem canker in West Africa with the application of cuprous oxide.

 

THE GROUP KNOWN as Phytophthora species is a ubiquitous and versatile series of plant pathogens causing black pod and stem canker in cocoa (Theobroma cacao) with the capacity to destroy yield and kill trees. Phytophthora and other downy mildews in the class Oomycetes were regarded as true fungi but are now re-classified with ‘water moulds’ in a group called the Chromista.

Broad host range including many forest trees means they are ideally placed to move into and exploit cocoa that was first planted on partially cleared forest land with some wild trees left in situ as upper storey shade. Phytophthora megakarya in West Africa probably established on cocoa in this way. Phytophthora is controlled by copper-based fungicides first used on cocoa 100 years ago.

Without copper as a fungicide this crop could not be produced at current levels. Protectant copper fungicides kill spores as they germinate and before germ tubes penetrate the pod. As such they must be in place before Phytophthora spores alight.

Specific host and pathogen factors combine to make Phytophthora the most important disease of cocoa worldwide. Host pathogen relationship Cocoa is an understorey tree in the Amazonian rain-forest thriving in heavy rainfall, high humidity and shade.

Early mycologists called the Oomycetes (downy mildews) the ‘water fungi’ because they rely on free water and high relative humidity (RH) for spore germination, infection, spore production and dissemination. Where cocoa thrives, so does Phytophthora. The disease was called ‘black pod’ but now Phytophthora pod rot to avoid confusion with other diseases such as brown pod rot caused by Lasiodiplodia (Botryodiplodia) theobromae. Phytophthora occurs in almost every climate and ecosystem. Four species (Phytophthora palmivora, P. megakarya, P. capsici and P. citrophthora) are established pathogens of cocoa.

Flower cushions, pods at all stages of development (including cherelles), foliage, bark and roots are prone to infection. Phytophthora persists in old pods on trees or ground. P. megakarya grows and sporulates on cocoa debris in the soil. Evergreen cocoa trees produce pods continually for 50 years or more with individual pods taking 5 months to mature. This together with fallen pods and bark infections (stem cankers) means trees are vulnerable year-round infection from sporeproducing infections.

Phytophthora profile

High frequency and heavy pod losses characterise Phytophthora on cocoa. Crop losses average 50 per cent worldwide rising to 100 in some parts of West Africa where excessively wet conditions allow. Phytophthora megakarya in West Africa where over half the world’s cocoa is grown is the most aggressive, with severe infection resulting in loss of virtually all harvestable pods.

Phytophthora palmivora is less pathogenic but has a wider host range covering some 200 different plant species including tree crops and wild forest trees used for cocoa shade. Pods at all positions from high branches to lower trunk and all stages from tiny cherelles (new pods) to full-size mature pods are vulnerable. Phytophthora pod rot is a dark necrosis expanding rapidly to leave a completely black and dried out mummified pod. Infection of full grown pods causes most loss because Phytophthora induced ‘cherelle wilt’ is compensated for by pollination and fertilisation of later formed flowers.

Phytophthora cherelle wilt can be confused with natural thinning called physiological cherelle wilt. Phytophthora causes stem cankers on the trunk and branches and necrosis of the chupons (vertical shoots), leaves, roots and nursery seedlings. Phytophthora megakarya in West Africa persists on cocoa debris from where spores are splashed onto the trunk and lowpositioned pods to play a key role in disease epidemiology. Phytophthora’s strength lies in its versatile growth and reproduction

including mycelium and several spore types – asexual spores as sporangia or resting chlamydospores and sexually produced oospores. Main spread and dissemination is via sporangia produced most quickly and profusely at 80 per cent RH and temperature range of 25-30 °C. Sporangia appear like a fine white powder on the pods some 4-6 days after infection. Sporangial infection progresses in three ways, by producing mycelium, more sporangia or motile zoospores in presence of free water required for movement.

Optimal liberation of zoospores from the sporangium occurs at a water film temperature of 15-18 ºC and ambient R.H. of 70-80 per cent. Dynamic disease reservoir Diverse infection foci generate a self-perpetuating reservoir of inoculums continually circulating in through rainfall and other water movements. Inherently high humidity within cocoa canopies regularly drenched with rainfall creates an explosive disease situation. Spores spread down the canopy in drips, drops and rivulets and upwards from the ground in soil splashes and aerosol droplets with opportunities for spore entrapment at various points.

These may be ‘natural’ sites like flower cushions and axils of pod peduncles (stalks) and chupons (vertical leaf-bearing shoots) or exogenous sites like bromeliad epiphytes and termite nests. Insects like small black ants (Crematogaster striatula) spread spores when using dead plant tissue to construct their tents around peduncles of developing pods. Spore dissemination is assisted by rats and squirrels feeding on sugar-rich pods with pod wounds providing points for pathogen entry.

Cultural control Phytophthora can be managed by good cultural practice to promote tree health and vigour, canopy aeration and crop hygiene. Pruning for good air circulation and humidity control is essential. Trees should be kept below 4m so all pods can be sprayed using a lever-operated knapsack sprayer without extension lance. Cocoa flowers are borne in cushions directly on the trunk and branches to leave many pods at ground level. Stem canker occurs on lower trunks especially when P. megakarya is involved.

Weed growth may actually reduce amount of inoculums splashed up from soil but on balance weeds around trees encourage Phytophthora through increased humidity. Regular and complete removal of diseased, damaged or unwanted pods from trees and ground with disposal away from cocoa is the other core requirement for good cultural control. Phytophthora’s wide host range must be considered when selecting shade trees. Avoid species within same plant family as cocoa (Sterculiaceae), including Theobroma sp, Cola sp and gum producing Sterculia sp, as well as trees from related plant families including Bombacaceae and Malvaceae.

Invingia gabonensis (elephant mango – family Irvingiaceae) is an important wild tree host of P. megakara in West Africa and the species from which Phytophthora most likely moved into cocoa. Copper fungicides Many cocoa farmers in West Africa are forced to spray routinely against Phytophthora. Deposits of protectant fungicide must withstand intense rainfall to ensure long term pod protection.

A sparingly soluble fungicide profile with gradual redistribution of copper ions to protect hitherto unsprayed areas is required. Fungicide formulations must be physically compatible with the spray machines used in cocoa and economically compatible with long term use by generally resource poor cocoa farmers. Fungicides are sprayed frequently over sustained periods to manage high disease pressure especially during wet seasons. As such deposits and residues must be free of any phytotoxic effect, not jeopardize bean fermentation or allow evolution of fungicide-resistant strains of pathogen.

Copper-based fungicides were first used on cocoa over 100 years ago and monopolise the market today because they still fulfil these requirements. The first copper fungicide was ‘Bordeaux’, a mixture of blue copper sulphate and strong alkali (slaked lime – calcium hydroxide). Copper sulphate is too soluble for use as a stand-alone agricultural fungicide, washed off easily and causing phytotoxic damage to many green plants. Mixing with lime forms a less soluble complex. Bordeaux mixture is still used today but is largely superseded by particulate and fixed (sparingly soluble) copper compounds such as copper oxychloride, cupric hydroxide and cuprous oxide.

Underpinned by basic chemistry and supported by field trials in Brazil cuprous oxide is considered to be the most active. Cuprous oxide Cuprous oxide is a protectant fungicide so spray timing is critical with decisions on which part(s) of the canopy to target clearly important. Deposit tenacity is another key consideration. Due consideration must also be given to any interaction between application frequency and dosage level, so farmers achieve most costeffective deposition and control from the minimum required total weight of product applied.

 

 

farmers are financially strapped so choice may come down to what sprayers they already have or what they can afford. Most efficient and cost effective application is achieved by targeting pods by spraying with lever-operated knapsack sprayers. Pods at all stages of development including cherelles on flower cushions must be sprayed. Research by IPARC (International Pesticide Application Research Consortium) showed most efficient and effective spray deposition on pods is achieved using narrow cone nozzles instead of the variable cone nozzles invariably supplied with lever-operated knapsack sprayers.

The motorised knapsack mistblower is the only mainstream portable option for whole canopy spraying. Mistblowers were developed to reduce spray volume and provide quicker, easier and more effective whole canopy application. Spray volume can be reduced to even lower levels by fitting ULV (ultra low volume) jets. Hand-held air-assisted ULV sprayers (atomisers) powered by two-stroke petrol engines have been used to control foliar disease in other evergreen tropical tree crops like citrus, and there is no reason why they could not be used in cocoa. Operators should mix and suspend cuprous oxide wettable powder or wettable granule in water before adding an appropriate oil to make a water:oil emulsion sprayable mixture.

Concentration of cuprous oxide and ratio of oil:water used requires prior evaluation with users mindful of potential blockage of the fine (low flow rate) nozzles used in these sprayers. Spraying: Dosage x Frequency Cocoa in Nigeria, Cameroon and the wetter parts of Côte d’Ivoire traditionally requires 10-12 applications per year. Brazilian scientists concerned over logistics and cost of frequent spraying consolidated control into fewer sprays of higher dosage so amount of cuprous oxide applied per year stayed the same.

Success was ascribed to high redistributive capacity of cuprous oxide deposits over extended periods of time. These high-concentration applications produced correspondingly thicker deposits and ‘laminal’ liberation where the inner mass of cuprous oxide deposit is protected against weathering, thus providing extended fungicidal activity and protection. Recent development of ‘high copper’ formulations (Nordox 75WP and Nordox 75WG) improved practicalities of using higher doses in fewer sprays. Farmers can double dose of active copper using just 50 per cent more of the high copper formulation instead of twice the amount required when using a standard 50 per cent WP.

Farmers apply same amount of active copper in less product with more cost effective transit and storage from factory gate to farm gate. Stem canker control Phytophthora also causes stem canker which kills tress by girdling the main stem (trunk). Stem canker in West Africa is caused by soil-based inoculums of P. megakarya infecting at low positions on the trunk and P. palmivora generally higher up the tree. Cuprous oxide is widely used in stem canker control. Cankers are cleaned off by cutting and scraping, making sure all diseased tissue is removed together with 1cm of clean bark around the canker.

The cleaned area is treated by brushing with cuprous oxide fungicide paint and the whole area sealed with a waterproof and insect proof layer of grease. Early-stage Phytophthora stem canker has few if any external symptoms and is therefore difficult to detect, but careful bark scraping will reveal a pink-red discolouration of the cambial tissue. Any scraping and wound cleaning must be conducted with care. Large treated areas may fail to heal sufficiently quickly. Extra bonus for copper No fungicide should aggravate existing disease problems or cause new ones, while simultaneous control of other pests is a bonus.

Cuprous oxide scores high on all counts. It is a broad spectrum fungicide and bactericidal too and also controlling a wide range of ‘green’ epiphytic plants that grow on cocoa trees. These include algae, lichen, mosses, ferns and bromeliads. Molluscs (snails and slugs) that frequently damage nursery cocoa seedlings are susceptible to sprays of cuprous oxide fungicide. Copper ions play a vital role in the nutrition of green plants as a micronutrient (trace element). There are no recorded cases of Phytophthora resistance to any copper fungicide.

Systemic single-site action Phytophthora-specific fungicides showed early promise for Phytophthora pod rot control, but development of resistant strains from use on other crops caused more careful and restricted use in cocoa. This included alternation of systemic sprays with copper sprays and use in mixtures with copper fungicide to provide protection against resistance development to the systemic fungicide.


LATEST NEWS IN Agriculture

African food imports bill predicted to double by 2030

African food imports bill predicted to d…

Experts have warned that the cost of Africa’s yearly food imports could increase from US$50bn to US$110bn by 2030 if immediate measures aren’t taken to increase food production

Wildlife and forestry sector in the spotlight

Wildlife and forestry sector in the spot…

On August 22, the 23rd session of the African Forestry and Wildlife Commission, hosted by the Government of the Democratic Republic of the Congo opened in Kinshasa, putting the future...

Boosting investment for Africa-made cotton

Boosting investment for Africa-made cott…

At a partner’s conference on cotton, jointly organised with the World Trade Organization (WTO) and the UN Conference on Trade and Development (UNCTAD), donors were urged to mobilise resources for new partnerships.   

Nature-based solutions help farmers in Ghana

Nature-based solutions help farmers in G…

Organic pesticides, waste-based fertilisers and forest regeneration are just a few of the green initiatives being employed in Ghana to boost farming communities’ resilience to the impacts of climate...

Boosting soil nutrient mapping in sub-Saharan Africa

Boosting soil nutrient mapping in sub-Sa…

The Food and Agriculture Organization of the United Nations (FAO) is set to fast track an impact-oriented project in sub-Saharan Africa and Central America for digital soil nutrient mapping, after...

Gambia-Korea partnership seeks to double rice production to curb food insecurity

Gambia-Korea partnership seeks to double…

President Adama Barrow has received a delegation led by the Korean Ambassador to The Gambia, HE Kim Ji-Joon, at the State House in Banjul to announce the delivery of sample rice...

Prev Next

OTHER RELATED ARTICLES - Agriculture

UNOP builds feeder roads in South Sudan

UNOP builds feeder roads in South Sudan

To improve food security, as well as to support trade and market development in South Sudan,  United Nations Office for Project Services (UNOPS) has constructed feeder roads – secondary roads...

Future Food-Tech announces speakers for its new Alternative Protein Summit

Future Food-Tech announces speakers for …

The NEW Future Food-Tech Alternative Proteins Summit 22-23 June will unite global food industry leaders to map out the future of protein

KARI develops new finger millet variety

KARI develops new finger millet variety

The Kenya Agricultural Research Institute (KARI) has developed a hybrid finger millet variety in Kenya that is drought- and disease-resistant

AfDB approves US$109mn loan for Côte d’Ivoire’s cocoa industry

AfDB approves US$109mn loan for Côte d’I…

African Development Bank (AfDB) has approved a US$109mn loan to Sucres et Denrées Côte d’Ivoire (Sucden CI) for investment in the cocoa sector in the country

Tanzanian coffee industry shows promising potential

Tanzanian coffee industry shows promisin…

A recent report released by Rabobank has suggested that governmental effects will be required to allow Tanzanian farmers to enhance the quality of their beans in order to encourage further...

Abia State governor seeks AfDB partnership to build agricultural base

Abia State governor seeks AfDB partnersh…

Nigeria’s Abia State governor Okezie Ikpeazu met with African Development Bank (AfDB) president Akinwumi Adesina at the Bank’s headquarters in Abidjan, Cote d’Ivoire to discuss investment for Abia to boost...

FAO organises training workshop for the Libyan Ministry of Agriculture

FAO organises training workshop for the …

As part of the capacity building agreement between the Food and Agriculture Organisation of the United Nations (FAO) and the Government of Libya, FAO representation to Libya is delivering a...

IFAD to honour rural women

IFAD to honour rural women

IFAD will focus upon empowering young women in rural communities as it marks International Women’s Day on 8 March

Kenyan farmers grow chives to meet growing export demand

Kenyan farmers grow chives to meet growi…

Chives, a herb belonging to the onion family, has become the crop of choice for a group of farmers in Kenya’s Nakuru County

Good Nature Agro secures funding to accelerate production of legume value chains

Good Nature Agro secures funding to acce…

Good Nature Agro, a Zambian company working from end-to-end within the specialised legume value chains, has announced the closure of Series A equity financing totalling US$ 2.1mn

FAO launches Nuru app in Africa to find Fall Armyworm

FAO launches Nuru app in Africa to find …

The UN Food and Agriculture Organisation (FAO) and Pennsylvania State University have joined forces to develop and launch a talking app, Nuru, to help African farmers recognise Fall Armyworm

Noble Group latest cocoa trader to sign Abidjan declaration

Noble Group latest cocoa trader to sign …

Cocoa trader and processor Noble Group has become the latest signatory of the Abidjan Cocoa Declaration after signing the agreement at the World Cocoa Conference in Abidjan, Côte d’Ivoire

Prev Next